Laser Welding of Aluminium Alloy 5083
نویسندگان
چکیده
There are two laser welding mechanisms, keyhole mode and conduction mode. Keyhole welding is widely used because it produces welds with high aspect ratios and narrow heat affected zones. However keyhole welding can be unstable, as the keyhole oscillates and closes intermittently. This intermittent closure causes porosity due to gas entrapment. Conduction welding, on the other hand, is more stable since vaporisation is minimal and hence there is no further absorption below the surface of the material. Conduction welds are usually produced using low-power focused laser beams. This results in shallow welds with a low aspect ratio. In this work, high-power CO2 and YAG lasers have been used to produce laser conduction welds on 2mm and 3mm gauge AA5083 respectively by means of defocused beams. Full penetration butt-welds of 2mm and 3mm gauge AA5083 using this process have been produced. It has been observed that in this regime the penetration depth increases initially up to a maximum and then decreases with increasing spot size (corresponding to increase in distance of focus above the workpiece). Results of comparison of tensile strength tests for keyhole and conduction welds are shown. This process offers an alternative method of welding aluminium alloys, which have a high thermal conductivity.
منابع مشابه
Optimization of process parameters during Friction Stir Welding of Aluminium 5083 & 6082 Alloys
The paper deals with the optimization of welding parameters of friction stir welding of different Aluminium alloy groups. For this purpose 5 series Aluminium alloy Al 5083 and 6 series Aluminium alloy Al 6062 were taken .Tensile Strength test and micro structure analysis under various rotating speeds and tool profiles is conducted. It is observed that the increase in tool rotation speed and the...
متن کاملStudies on Distortion of Dissimilar Thin Sheet Weld Joints Using Laser Beam Welding
To achieve reliable welds with minimum distortion for the fabrication of components in aerospace industry laser beam welding is attempted. Laser welding can provide a significant benefit for the welding of Titanium and Aluminium thin sheet alloys of its precision and rapid processing capability. For laser welding, pulse shape, energy, duration, repetition rate and peak power are the most import...
متن کاملMicrostructure and mechanical characteristics of dissimilar aluminium alloy joining employing gas tungsten arc welding
Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the ...
متن کاملMicrostructure and mechanical characteristics of dissimilar aluminium alloy joining employing gas tungsten arc welding
Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the ...
متن کاملStudies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review
Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002